Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AST-MHSA : Code Summarization using Multi-Head Self-Attention (2308.05646v1)

Published 10 Aug 2023 in cs.CL, cs.LG, cs.PL, and cs.SE

Abstract: Code summarization aims to generate concise natural language descriptions for source code. The prevailing approaches adopt transformer-based encoder-decoder architectures, where the Abstract Syntax Tree (AST) of the source code is utilized for encoding structural information. However, ASTs are much longer than the corresponding source code, and existing methods ignore this size constraint by directly feeding the entire linearized AST into the encoders. This simplistic approach makes it challenging to extract truly valuable dependency relations from the overlong input sequence and leads to significant computational overhead due to self-attention applied to all nodes in the AST. To address this issue effectively and efficiently, we present a model, AST-MHSA that uses multi-head attention to extract the important semantic information from the AST. The model consists of two main components: an encoder and a decoder. The encoder takes as input the abstract syntax tree (AST) of the code and generates a sequence of hidden states. The decoder then takes these hidden states as input and generates a natural language summary of the code. The multi-head attention mechanism allows the model to learn different representations of the input code, which can be combined to generate a more comprehensive summary. The model is trained on a dataset of code and summaries, and the parameters of the model are optimized to minimize the loss between the generated summaries and the ground-truth summaries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube