Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Optimal Expressive Power of ReLU DNNs and Its Application in Approximation with Kolmogorov Superposition Theorem (2308.05509v1)

Published 10 Aug 2023 in cs.LG, cs.NA, and math.NA

Abstract: This paper is devoted to studying the optimal expressive power of ReLU deep neural networks (DNNs) and its application in approximation via the Kolmogorov Superposition Theorem. We first constructively prove that any continuous piecewise linear functions on $[0,1]$, comprising $O(N2L)$ segments, can be represented by ReLU DNNs with $L$ hidden layers and $N$ neurons per layer. Subsequently, we demonstrate that this construction is optimal regarding the parameter count of the DNNs, achieved through investigating the shattering capacity of ReLU DNNs. Moreover, by invoking the Kolmogorov Superposition Theorem, we achieve an enhanced approximation rate for ReLU DNNs of arbitrary width and depth when dealing with continuous functions in high-dimensional spaces.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.