Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-domain Recommendation with Embedding Disentangling and Domain Alignment (2308.05508v2)

Published 10 Aug 2023 in cs.IR and cs.AI

Abstract: Multi-domain recommendation (MDR) aims to provide recommendations for different domains (e.g., types of products) with overlapping users/items and is common for platforms such as Amazon, Facebook, and LinkedIn that host multiple services. Existing MDR models face two challenges: First, it is difficult to disentangle knowledge that generalizes across domains (e.g., a user likes cheap items) and knowledge specific to a single domain (e.g., a user likes blue clothing but not blue cars). Second, they have limited ability to transfer knowledge across domains with small overlaps. We propose a new MDR method named EDDA with two key components, i.e., embedding disentangling recommender and domain alignment, to tackle the two challenges respectively. In particular, the embedding disentangling recommender separates both the model and embedding for the inter-domain part and the intra-domain part, while most existing MDR methods only focus on model-level disentangling. The domain alignment leverages random walks from graph processing to identify similar user/item pairs from different domains and encourages similar user/item pairs to have similar embeddings, enhancing knowledge transfer. We compare EDDA with 12 state-of-the-art baselines on 3 real datasets. The results show that EDDA consistently outperforms the baselines on all datasets and domains. All datasets and codes are available at https://github.com/Stevenn9981/EDDA.

Citations (14)

Summary

We haven't generated a summary for this paper yet.