Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Test Case Minimization with Quantum Annealers (2308.05505v1)

Published 10 Aug 2023 in cs.SE

Abstract: Quantum annealers are specialized quantum computers for solving combinatorial optimization problems using special characteristics of quantum computing (QC), such as superposition, entanglement, and quantum tunneling. Theoretically, quantum annealers can outperform classical computers. However, the currently available quantum annealers are small-scale, i.e., they have limited quantum bits (qubits); hence, they currently cannot demonstrate the quantum advantage. Nonetheless, research is warranted to develop novel mechanisms to formulate combinatorial optimization problems for quantum annealing (QA). However, solving combinatorial problems with QA in software engineering remains unexplored. Toward this end, we propose BootQA, the very first effort at solving the test case minimization (TCM) problem with QA. In BootQA, we provide a novel formulation of TCM for QA, followed by devising a mechanism to incorporate bootstrap sampling to QA to optimize the use of qubits. We also implemented our TCM formulation in three other optimization processes: classical simulated annealing (SA), QA without problem decomposition, and QA with an existing D-Wave problem decomposition strategy, and conducted an empirical evaluation with three real-world TCM datasets. Results show that BootQA outperforms QA without problem decomposition and QA with the existing decomposition strategy in terms of effectiveness. Moreover, BootQA's effectiveness is similar to SA. Finally, BootQA has higher efficiency in terms of time when solving large TCM problems than the other three optimization processes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 40 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube