Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Double-chain Constraints for 3D Human Pose Estimation in Images and Videos (2308.05298v1)

Published 10 Aug 2023 in cs.CV and cs.AI

Abstract: Reconstructing 3D poses from 2D poses lacking depth information is particularly challenging due to the complexity and diversity of human motion. The key is to effectively model the spatial constraints between joints to leverage their inherent dependencies. Thus, we propose a novel model, called Double-chain Graph Convolutional Transformer (DC-GCT), to constrain the pose through a double-chain design consisting of local-to-global and global-to-local chains to obtain a complex representation more suitable for the current human pose. Specifically, we combine the advantages of GCN and Transformer and design a Local Constraint Module (LCM) based on GCN and a Global Constraint Module (GCM) based on self-attention mechanism as well as a Feature Interaction Module (FIM). The proposed method fully captures the multi-level dependencies between human body joints to optimize the modeling capability of the model. Moreover, we propose a method to use temporal information into the single-frame model by guiding the video sequence embedding through the joint embedding of the target frame, with negligible increase in computational cost. Experimental results demonstrate that DC-GCT achieves state-of-the-art performance on two challenging datasets (Human3.6M and MPI-INF-3DHP). Notably, our model achieves state-of-the-art performance on all action categories in the Human3.6M dataset using detected 2D poses from CPN, and our code is available at: https://github.com/KHB1698/DC-GCT.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube