Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Conformer-based Target-Speaker Automatic Speech Recognition for Single-Channel Audio (2308.05218v1)

Published 9 Aug 2023 in cs.SD, cs.LG, and eess.AS

Abstract: We propose CONF-TSASR, a non-autoregressive end-to-end time-frequency domain architecture for single-channel target-speaker automatic speech recognition (TS-ASR). The model consists of a TitaNet based speaker embedding module, a Conformer based masking as well as ASR modules. These modules are jointly optimized to transcribe a target-speaker, while ignoring speech from other speakers. For training we use Connectionist Temporal Classification (CTC) loss and introduce a scale-invariant spectrogram reconstruction loss to encourage the model better separate the target-speaker's spectrogram from mixture. We obtain state-of-the-art target-speaker word error rate (TS-WER) on WSJ0-2mix-extr (4.2%). Further, we report for the first time TS-WER on WSJ0-3mix-extr (12.4%), LibriSpeech2Mix (4.2%) and LibriSpeech3Mix (7.6%) datasets, establishing new benchmarks for TS-ASR. The proposed model will be open-sourced through NVIDIA NeMo toolkit.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.