Conformer-based Target-Speaker Automatic Speech Recognition for Single-Channel Audio (2308.05218v1)
Abstract: We propose CONF-TSASR, a non-autoregressive end-to-end time-frequency domain architecture for single-channel target-speaker automatic speech recognition (TS-ASR). The model consists of a TitaNet based speaker embedding module, a Conformer based masking as well as ASR modules. These modules are jointly optimized to transcribe a target-speaker, while ignoring speech from other speakers. For training we use Connectionist Temporal Classification (CTC) loss and introduce a scale-invariant spectrogram reconstruction loss to encourage the model better separate the target-speaker's spectrogram from mixture. We obtain state-of-the-art target-speaker word error rate (TS-WER) on WSJ0-2mix-extr (4.2%). Further, we report for the first time TS-WER on WSJ0-3mix-extr (12.4%), LibriSpeech2Mix (4.2%) and LibriSpeech3Mix (7.6%) datasets, establishing new benchmarks for TS-ASR. The proposed model will be open-sourced through NVIDIA NeMo toolkit.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.