Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scene-Generalizable Interactive Segmentation of Radiance Fields (2308.05104v1)

Published 9 Aug 2023 in cs.CV

Abstract: Existing methods for interactive segmentation in radiance fields entail scene-specific optimization and thus cannot generalize across different scenes, which greatly limits their applicability. In this work we make the first attempt at Scene-Generalizable Interactive Segmentation in Radiance Fields (SGISRF) and propose a novel SGISRF method, which can perform 3D object segmentation for novel (unseen) scenes represented by radiance fields, guided by only a few interactive user clicks in a given set of multi-view 2D images. In particular, the proposed SGISRF focuses on addressing three crucial challenges with three specially designed techniques. First, we devise the Cross-Dimension Guidance Propagation to encode the scarce 2D user clicks into informative 3D guidance representations. Second, the Uncertainty-Eliminated 3D Segmentation module is designed to achieve efficient yet effective 3D segmentation. Third, Concealment-Revealed Supervised Learning scheme is proposed to reveal and correct the concealed 3D segmentation errors resulted from the supervision in 2D space with only 2D mask annotations. Extensive experiments on two real-world challenging benchmarks covering diverse scenes demonstrate 1) effectiveness and scene-generalizability of the proposed method, 2) favorable performance compared to classical method requiring scene-specific optimization.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.