Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HSD-PAM: High Speed Super Resolution Deep Penetration Photoacoustic Microscopy Imaging Boosted by Dual Branch Fusion Network (2308.04922v1)

Published 9 Aug 2023 in eess.IV, physics.med-ph, and physics.optics

Abstract: Photoacoustic microscopy (PAM) is a novel implementation of photoacoustic imaging (PAI) for visualizing the 3D bio-structure, which is realized by raster scanning of the tissue. However, as three involved critical imaging parameters, imaging speed, lateral resolution, and penetration depth have mutual effect to one the other. The improvement of one parameter results in the degradation of other two parameters, which constrains the overall performance of the PAM system. Here, we propose to break these limitations by hardware and software co-design. Starting with low lateral resolution, low sampling rate AR-PAM imaging which possesses the deep penetration capability, we aim to enhance the lateral resolution and up sampling the images, so that high speed, super resolution, and deep penetration for the PAM system (HSD-PAM) can be achieved. Data-driven based algorithm is a promising approach to solve this issue, thereby a dedicated novel dual branch fusion network is proposed, which includes a high resolution branch and a high speed branch. Since the availability of switchable AR-OR-PAM imaging system, the corresponding low resolution, undersample AR-PAM and high resolution, full sampled OR-PAM image pairs are utilized for training the network. Extensive simulation and in vivo experiments have been conducted to validate the trained model, enhancement results have proved the proposed algorithm achieved the best perceptual and quantitative image quality. As a result, the imaging speed is increased 16 times and the imaging lateral resolution is improved 5 times, while the deep penetration merit of AR-PAM modality is still reserved.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.