Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multipacking and broadcast domination on cactus graph and its impact on hyperbolic graph (2308.04882v4)

Published 9 Aug 2023 in cs.DM

Abstract: For a graph $G$, $ mp(G) $ is the multipacking number, and $\gamma_b(G)$ is the broadcast domination number. It is known that $mp(G)\leq \gamma_b(G)$ and $\gamma_b(G)\leq 2mp(G)+3$ for any graph $G$, and it was shown that $\gamma_b(G)-mp(G)$ can be arbitrarily large for connected graphs. It is conjectured that $\gamma_b(G)\leq 2mp(G)$ for any general graph $G$. We show that, for any cactus graph $G$, $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for cactus graphs and asteroidal triple-free graphs by constructing an infinite family of cactus graphs which are also asteroidal triple-free graphs such that the ratio $\gamma_b(G)/mp(G)=4/3$, with $mp(G)$ arbitrarily large. This result shows that, for cactus graphs, the bound $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$ cannot be improved to a bound in the form $\gamma_b(G)\leq c_1\cdot mp(G)+c_2$, for any constant $c_1<4/3$ and $c_2$. Moreover, we provide an $O(n)$-time algorithm to construct a multipacking of cactus graph $G$ of size at least $ \frac{2}{3}mp(G)-\frac{11}{3} $, where $n$ is the number of vertices of the graph $G$. The hyperbolicity of the cactus graph class is unbounded. For $0$-hyperbolic graphs, $mp(G)=\gamma_b(G)$. Moreover, $mp(G)=\gamma_b(G)$ holds for the strongly chordal graphs which is a subclass of $\frac{1}{2}$-hyperbolic graphs. Now it's a natural question: what is the minimum value of $\delta$, for which we can say that the difference $ \gamma_{b}(G) - mp(G) $ can be arbitrarily large for $\delta$-hyperbolic graphs? We show that the minimum value of $\delta$ is $\frac{1}{2}$ using a construction of an infinite family of cactus graphs with hyperbolicity $\frac{1}{2}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: