Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multipacking and broadcast domination on cactus graph and its impact on hyperbolic graph (2308.04882v4)

Published 9 Aug 2023 in cs.DM

Abstract: For a graph $G$, $ mp(G) $ is the multipacking number, and $\gamma_b(G)$ is the broadcast domination number. It is known that $mp(G)\leq \gamma_b(G)$ and $\gamma_b(G)\leq 2mp(G)+3$ for any graph $G$, and it was shown that $\gamma_b(G)-mp(G)$ can be arbitrarily large for connected graphs. It is conjectured that $\gamma_b(G)\leq 2mp(G)$ for any general graph $G$. We show that, for any cactus graph $G$, $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for cactus graphs and asteroidal triple-free graphs by constructing an infinite family of cactus graphs which are also asteroidal triple-free graphs such that the ratio $\gamma_b(G)/mp(G)=4/3$, with $mp(G)$ arbitrarily large. This result shows that, for cactus graphs, the bound $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$ cannot be improved to a bound in the form $\gamma_b(G)\leq c_1\cdot mp(G)+c_2$, for any constant $c_1<4/3$ and $c_2$. Moreover, we provide an $O(n)$-time algorithm to construct a multipacking of cactus graph $G$ of size at least $ \frac{2}{3}mp(G)-\frac{11}{3} $, where $n$ is the number of vertices of the graph $G$. The hyperbolicity of the cactus graph class is unbounded. For $0$-hyperbolic graphs, $mp(G)=\gamma_b(G)$. Moreover, $mp(G)=\gamma_b(G)$ holds for the strongly chordal graphs which is a subclass of $\frac{1}{2}$-hyperbolic graphs. Now it's a natural question: what is the minimum value of $\delta$, for which we can say that the difference $ \gamma_{b}(G) - mp(G) $ can be arbitrarily large for $\delta$-hyperbolic graphs? We show that the minimum value of $\delta$ is $\frac{1}{2}$ using a construction of an infinite family of cactus graphs with hyperbolicity $\frac{1}{2}$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com