Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved EFX Approximation Guarantees under Ordinal-based Assumptions (2308.04860v1)

Published 9 Aug 2023 in cs.GT

Abstract: Our work studies the fair allocation of indivisible items to a set of agents, and falls within the scope of establishing improved approximation guarantees. It is well known by now that the classic solution concepts in fair division, such as envy-freeness and proportionality, fail to exist in the presence of indivisible items. Unfortunately, the lack of existence remains unresolved even for some relaxations of envy-freeness, and most notably for the notion of EFX, which has attracted significant attention in the relevant literature. This in turn has motivated the quest for approximation algorithms, resulting in the currently best known $(\phi-1)$-approximation guarantee by Amanatidis et al (2020), where $\phi$ equals the golden ratio. So far, it has been notoriously hard to obtain any further advancements beyond this factor. Our main contribution is that we achieve better approximations, for certain special cases, where the agents agree on their perception of some items in terms of their worth. In particular, we first provide an algorithm with a $2/3$-approximation, when the agents agree on what are the top $n$ items (but not necessarily on their exact ranking), with $n$ being the number of agents. To do so, we also study a general framework that can be of independent interest for obtaining further guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (2)

Summary

We haven't generated a summary for this paper yet.