Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bayes Risk Consistency of Nonparametric Classification Rules for Spike Trains Data (2308.04796v1)

Published 9 Aug 2023 in cs.IT, cs.LG, math.IT, and q-bio.NC

Abstract: Spike trains data find a growing list of applications in computational neuroscience, imaging, streaming data and finance. Machine learning strategies for spike trains are based on various neural network and probabilistic models. The probabilistic approach is relying on parametric or nonparametric specifications of the underlying spike generation model. In this paper we consider the two-class statistical classification problem for a class of spike train data characterized by nonparametrically specified intensity functions. We derive the optimal Bayes rule and next form the plug-in nonparametric kernel classifier. Asymptotical properties of the rules are established including the limit with respect to the increasing recording time interval and the size of a training set. In particular the convergence of the kernel classifier to the Bayes rule is proved. The obtained results are supported by a finite sample simulation studies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.