rCanary: Detecting Memory Leaks Across Semi-automated Memory Management Boundary in Rust (2308.04787v2)
Abstract: Rust is an effective system programming language that guarantees memory safety via compile-time verifications. It employs a novel ownership-based resource management model to facilitate automated deallocation. This model is anticipated to eliminate memory leaks. However, we observed that user intervention drives it into semi-automated memory management and makes it error-prone to cause leaks. In contrast to violating memory-safety guarantees restricted by the unsafe keyword, the boundary of leaking memory is implicit, and the compiler would not emit any warnings for developers. In this paper, we present rCanary, a static, non-intrusive, and fully automated model checker to detect leaks across the semiautomated boundary. We design an encoder to abstract data with heap allocation and formalize a refined leak-free memory model based on boolean satisfiability. It can generate SMT-Lib2 format constraints for Rust MIR and is implemented as a Cargo component. We evaluate rCanary by using flawed package benchmarks collected from the pull requests of open-source Rust projects. The results indicate that it is possible to recall all these defects with acceptable false positives. We further apply our tool to more than 1,200 real-world crates from crates.io and GitHub, identifying 19 crates having memory leaks. Our analyzer is also efficient, that costs 8.4 seconds per package.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.