Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spartan Bipartite Graphs are Essentially Elementary (2308.04548v1)

Published 8 Aug 2023 in cs.DM and math.CO

Abstract: We study a two-player game on a graph between an attacker and a defender. To begin with, the defender places guards on a subset of vertices. In each move, the attacker attacks an edge. The defender must move at least one guard across the attacked edge to defend the attack. The defender wins if and only if the defender can defend an infinite sequence of attacks. The smallest number of guards with which the defender has a winning strategy is called the eternal vertex cover number of a graph $G$ and is denoted by $evc(G)$. It is clear that $evc(G)$ is at least $mvc(G)$, the size of a minimum vertex cover of $G$. We say that $G$ is Spartan if $evc(G) = mvc(G)$. The characterization of Spartan graphs has been largely open. In the setting of bipartite graphs on $2n$ vertices where every edge belongs to a perfect matching, an easy strategy is to have $n$ guards that always move along perfect matchings in response to attacks. We show that these are essentially the only Spartan bipartite graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.