Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Revolutionizing Wireless Networks with Federated Learning: A Comprehensive Review (2308.04404v2)

Published 1 Aug 2023 in cs.LG and cs.NI

Abstract: These days with the rising computational capabilities of wireless user equipment such as smart phones, tablets, and vehicles, along with growing concerns about sharing private data, a novel machine learning model called federated learning (FL) has emerged. FL enables the separation of data acquisition and computation at the central unit, which is different from centralized learning that occurs in a data center. FL is typically used in a wireless edge network where communication resources are limited and unreliable. Bandwidth constraints necessitate scheduling only a subset of UEs for updates in each iteration, and because the wireless medium is shared, transmissions are susceptible to interference and are not assured. The article discusses the significance of Machine Learning in wireless communication and highlights Federated Learning (FL) as a novel approach that could play a vital role in future mobile networks, particularly 6G and beyond.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.