Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Actor-Critic with variable time discretization via sustained actions (2308.04299v1)

Published 8 Aug 2023 in cs.AI

Abstract: Reinforcement learning (RL) methods work in discrete time. In order to apply RL to inherently continuous problems like robotic control, a specific time discretization needs to be defined. This is a choice between sparse time control, which may be easier to train, and finer time control, which may allow for better ultimate performance. In this work, we propose SusACER, an off-policy RL algorithm that combines the advantages of different time discretization settings. Initially, it operates with sparse time discretization and gradually switches to a fine one. We analyze the effects of the changing time discretization in robotic control environments: Ant, HalfCheetah, Hopper, and Walker2D. In all cases our proposed algorithm outperforms state of the art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube