Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comparative Study on TF-IDF feature Weighting Method and its Analysis using Unstructured Dataset (2308.04037v1)

Published 8 Aug 2023 in cs.CL and cs.LG

Abstract: Text Classification is the process of categorizing text into the relevant categories and its algorithms are at the core of many NLP. Term Frequency-Inverse Document Frequency (TF-IDF) and NLP are the most highly used information retrieval methods in text classification. We have investigated and analyzed the feature weighting method for text classification on unstructured data. The proposed model considered two features N-Grams and TF-IDF on the IMDB movie reviews and Amazon Alexa reviews dataset for sentiment analysis. Then we have used the state-of-the-art classifier to validate the method i.e., Support Vector Machine (SVM), Logistic Regression, Multinomial Naive Bayes (Multinomial NB), Random Forest, Decision Tree, and k-nearest neighbors (KNN). From those two feature extractions, a significant increase in feature extraction with TF-IDF features rather than based on N-Gram. TF-IDF got the maximum accuracy (93.81%), precision (94.20%), recall (93.81%), and F1-score (91.99%) value in Random Forest classifier.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.