Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Collaborative Acceleration for FFT on Commercial Processing-In-Memory Architectures (2308.03973v1)

Published 8 Aug 2023 in cs.AR and cs.DC

Abstract: This paper evaluates the efficacy of recent commercial processing-in-memory (PIM) solutions to accelerate fast Fourier transform (FFT), an important primitive across several domains. Specifically, we observe that efficient implementations of FFT on modern GPUs are memory bandwidth bound. As such, the memory bandwidth boost availed by commercial PIM solutions makes a case for PIM to accelerate FFT. To this end, we first deduce a mapping of FFT computation to a strawman PIM architecture representative of recent commercial designs. We observe that even with careful data mapping, PIM is not effective in accelerating FFT. To address this, we make a case for collaborative acceleration of FFT with PIM and GPU. Further, we propose software and hardware innovations which lower PIM operations necessary for a given FFT. Overall, our optimized PIM FFT mapping, termed Pimacolaba, delivers performance and data movement savings of up to 1.38$\times$ and 2.76$\times$, respectively, over a range of FFT sizes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.