Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CheXFusion: Effective Fusion of Multi-View Features using Transformers for Long-Tailed Chest X-Ray Classification (2308.03968v1)

Published 8 Aug 2023 in cs.CV and cs.AI

Abstract: Medical image classification poses unique challenges due to the long-tailed distribution of diseases, the co-occurrence of diagnostic findings, and the multiple views available for each study or patient. This paper introduces our solution to the ICCV CVAMD 2023 Shared Task on CXR-LT: Multi-Label Long-Tailed Classification on Chest X-Rays. Our approach introduces CheXFusion, a transformer-based fusion module incorporating multi-view images. The fusion module, guided by self-attention and cross-attention mechanisms, efficiently aggregates multi-view features while considering label co-occurrence. Furthermore, we explore data balancing and self-training methods to optimize the model's performance. Our solution achieves state-of-the-art results with 0.372 mAP in the MIMIC-CXR test set, securing 1st place in the competition. Our success in the task underscores the significance of considering multi-view settings, class imbalance, and label co-occurrence in medical image classification. Public code is available at https://github.com/dongkyuk/CXR-LT-public-solution

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)