Papers
Topics
Authors
Recent
Search
2000 character limit reached

CheXFusion: Effective Fusion of Multi-View Features using Transformers for Long-Tailed Chest X-Ray Classification

Published 8 Aug 2023 in cs.CV and cs.AI | (2308.03968v1)

Abstract: Medical image classification poses unique challenges due to the long-tailed distribution of diseases, the co-occurrence of diagnostic findings, and the multiple views available for each study or patient. This paper introduces our solution to the ICCV CVAMD 2023 Shared Task on CXR-LT: Multi-Label Long-Tailed Classification on Chest X-Rays. Our approach introduces CheXFusion, a transformer-based fusion module incorporating multi-view images. The fusion module, guided by self-attention and cross-attention mechanisms, efficiently aggregates multi-view features while considering label co-occurrence. Furthermore, we explore data balancing and self-training methods to optimize the model's performance. Our solution achieves state-of-the-art results with 0.372 mAP in the MIMIC-CXR test set, securing 1st place in the competition. Our success in the task underscores the significance of considering multi-view settings, class imbalance, and label co-occurrence in medical image classification. Public code is available at https://github.com/dongkyuk/CXR-LT-public-solution

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.