Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Approximate Dynamic Programming Approach to Vehicle Platooning Coordination in Networks (2308.03966v1)

Published 8 Aug 2023 in eess.SY and cs.SY

Abstract: Platooning connected and autonomous vehicles (CAVs) provide significant benefits in terms of traffic efficiency and fuel economy. However, most existing platooning systems assume the availability of pre-determined plans, which is not feasible in real-time scenarios. In this paper, we address this issue in time-dependent networks by formulating a Markov decision process at each junction, aiming to minimize travel time and fuel consumption. Initially, we analyze coordinated platooning without routing to explore the cooperation among controllers on an identical path. We propose two novel approaches based on approximate dynamic programming, offering suboptimal control in the context of a stochastic finite horizon problem. The results demonstrate the superiority of the approximation in the policy space. Furthermore, we investigate platooning in a network setting, where speed profiles and routes are determined simultaneously. To simplify the problem, we decouple the action space by prioritizing routing decisions based on travel time estimation. We subsequently employ the aforementioned policy approximation to determine speed profiles, considering essential parameters such as travel times. Our simulation results in SUMO indicate that our method yields better performance than conventional approaches, leading to potential travel cost savings of up to 40%. Additionally, we evaluate the resilience of our approach in dynamically changing networks, affirming its ability to maintain efficient platooning operations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube