Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Improved Approximation Algorithm for the Max-$3$-Section Problem (2308.03516v1)

Published 7 Aug 2023 in cs.DS

Abstract: We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.