Papers
Topics
Authors
Recent
2000 character limit reached

An Improved Approximation Algorithm for the Max-$3$-Section Problem (2308.03516v1)

Published 7 Aug 2023 in cs.DS

Abstract: We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.