Papers
Topics
Authors
Recent
2000 character limit reached

Deepfake Detection: A Comparative Analysis (2308.03471v1)

Published 7 Aug 2023 in cs.CV

Abstract: This paper present a comprehensive comparative analysis of supervised and self-supervised models for deepfake detection. We evaluate eight supervised deep learning architectures and two transformer-based models pre-trained using self-supervised strategies (DINO, CLIP) on four benchmarks (FakeAVCeleb, CelebDF-V2, DFDC, and FaceForensics++). Our analysis includes intra-dataset and inter-dataset evaluations, examining the best performing models, generalisation capabilities, and impact of augmentations. We also investigate the trade-off between model size and performance. Our main goal is to provide insights into the effectiveness of different deep learning architectures (transformers, CNNs), training strategies (supervised, self-supervised), and deepfake detection benchmarks. These insights can help guide the development of more accurate and reliable deepfake detection systems, which are crucial in mitigating the harmful impact of deepfakes on individuals and society.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.