Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Positional Embeddings for Solving PDEs with Evolutional Deep Neural Networks (2308.03461v1)

Published 7 Aug 2023 in math.NA and cs.NA

Abstract: This work extends the paradigm of evolutional deep neural networks (EDNNs) to solving parametric time-dependent partial differential equations (PDEs) on domains with geometric structure. By introducing positional embeddings based on eigenfunctions of the Laplace-Beltrami operator, geometric properties are encoded intrinsically and Dirichlet, Neumann and periodic boundary conditions of the PDE solution are enforced directly through the neural network architecture. The proposed embeddings lead to improved error convergence for static PDEs and extend EDNNs towards computational domains of realistic complexity. Several steps are taken to improve performance of EDNNs: Solving the EDNN update equation with a Krylov solver avoids the explicit assembly of Jacobians and enables scaling to larger neural networks. Computational efficiency is further improved by an ad-hoc active sampling scheme that uses the PDE dynamics to effectively sample collocation points. A modified linearly implicit Rosenbrock method is proposed to alleviate the time step requirements of stiff PDEs. Lastly, a completely training-free approach, which automatically enforces initial conditions and only requires time integration, is compared against EDNNs that are trained on the initial conditions. We report results for the Korteweg-de Vries equation, a nonlinear heat equation and (nonlinear) advection-diffusion problems on domains with and without holes and various boundary conditions, to demonstrate the effectiveness of the method. The numerical results highlight EDNNs as a promising surrogate model for parametrized PDEs with slow decaying Kolmogorov n-width.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.