Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hierarchical Contrastive Learning with Multiple Augmentation for Sequential Recommendation (2308.03400v1)

Published 7 Aug 2023 in cs.IR

Abstract: Sequential recommendation addresses the issue of preference drift by predicting the next item based on the user's previous behaviors. Recently, a promising approach using contrastive learning has emerged, demonstrating its effectiveness in recommending items under sparse user-item interactions. Significantly, the effectiveness of combinations of various augmentation methods has been demonstrated in different domains, particularly in computer vision. However, when it comes to augmentation within a contrastive learning framework in sequential recommendation, previous research has only focused on limited conditions and simple structures. Thus, it is still possible to extend existing approaches to boost the effects of augmentation methods by using progressed structures with the combinations of multiple augmentation methods. In this work, we propose a novel framework called Hierarchical Contrastive Learning with Multiple Augmentation for Sequential Recommendation(HCLRec) to overcome the aforementioned limitation. Our framework leverages existing augmentation methods hierarchically to improve performance. By combining augmentation methods continuously, we generate low-level and high-level view pairs. We employ a Transformers-based model to encode the input sequence effectively. Furthermore, we introduce additional blocks consisting of Transformers and position-wise feed-forward network(PFFN) layers to learn the invariance of the original sequences from hierarchically augmented views. We pass the input sequence to subsequent layers based on the number of increment levels applied to the views to handle various augmentation levels. Within each layer, we compute contrastive loss between pairs of views at the same level. Extensive experiments demonstrate that our proposed method outperforms state-of-the-art approaches and that HCLRec is robust even when faced with the problem of sparse interaction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.