Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Expediting Neural Network Verification via Network Reduction (2308.03330v2)

Published 7 Aug 2023 in cs.SE, cs.AI, and cs.LG

Abstract: A wide range of verification methods have been proposed to verify the safety properties of deep neural networks ensuring that the networks function correctly in critical applications. However, many well-known verification tools still struggle with complicated network architectures and large network sizes. In this work, we propose a network reduction technique as a pre-processing method prior to verification. The proposed method reduces neural networks via eliminating stable ReLU neurons, and transforming them into a sequential neural network consisting of ReLU and Affine layers which can be handled by the most verification tools. We instantiate the reduction technique on the state-of-the-art complete and incomplete verification tools, including alpha-beta-crown, VeriNet and PRIMA. Our experiments on a large set of benchmarks indicate that the proposed technique can significantly reduce neural networks and speed up existing verification tools. Furthermore, the experiment results also show that network reduction can improve the availability of existing verification tools on many networks by reducing them into sequential neural networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube