Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Implicit Graph Neural Diffusion Networks: Convergence, Generalization, and Over-Smoothing (2308.03306v2)

Published 7 Aug 2023 in cs.LG

Abstract: Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems recently. However, poorly designed implicit GNN layers may have limited adaptability to learn graph metrics, experience over-smoothing issues, or exhibit suboptimal convergence and generalization properties, potentially hindering their practical performance. To tackle these issues, we introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator. Our framework allows learning the metrics of vertex and edge spaces, as well as the graph diffusion strength from data. We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem and give conditions under which it may suffer from over-smoothing during training (OST) and inference (OSI). We further propose a new implicit GNN model to avoid OST and OSI. We establish that with an appropriately chosen hyperparameter greater than the largest eigenvalue of the parameterized graph Laplacian, DIGNN guarantees a unique equilibrium, quick convergence, and strong generalization bounds. Our models demonstrate better performance than most implicit and explicit GNN baselines on benchmark datasets for both node and graph classification tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.