Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LEAPS: Topological-Layout-Adaptable Multi-Die FPGA Placement for Super Long Line Minimization (2308.03233v2)

Published 7 Aug 2023 in cs.AR

Abstract: Multi-die FPGAs are crucial components in modern computing systems, particularly for high-performance applications such as artificial intelligence and data centers. Super long lines (SLLs) provide interconnections between super logic regions (SLRs) for a multi-die FPGA on a silicon interposer. They have significantly higher delay compared to regular interconnects, which need to be minimized. With the increase in design complexity, the growth of SLLs gives rise to challenges in timing and power closure. Existing placement algorithms focus on optimizing the number of SLLs but often face limitations due to specific topologies of SLRs. Furthermore, they fall short of achieving continuous optimization of SLLs throughout the entire placement process. This highlights the necessity for more advanced and adaptable solutions. In this paper, we propose LEAPS, a comprehensive, systematic, and adaptable multi-die FPGA placement algorithm for SLL minimization. Our contributions are threefold: 1) proposing a high-performance global placement algorithm for multi-die FPGAs that optimizes the number of SLLs while addressing other essential design constraints such as wirelength, routability, and clock routing; 2) introducing a versatile method for more complex SLR topologies of multi-die FPGAs, surpassing the limitations of existing approaches; and 3) executing continuous optimization of SLLs across the whole placement stages, including global placement (GP), legalization (LG), and detailed placement (DP). Experimental results demonstrate the effectiveness of LEAPS in reducing SLLs and enhancing circuit performance. Compared with the most recent state-of-the-art (SOTA) method, LEAPS achieves an average reduction of 43.08% in SLLs and 9.99% in HPWL, while exhibiting a notable 34.34$\times$ improvement in runtime.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube