Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Detection of Anomalies in Multivariate Time Series Using Ensemble Techniques (2308.03171v1)

Published 6 Aug 2023 in cs.LG and stat.ML

Abstract: Anomaly Detection in multivariate time series is a major problem in many fields. Due to their nature, anomalies sparsely occur in real data, thus making the task of anomaly detection a challenging problem for classification algorithms to solve. Methods that are based on Deep Neural Networks such as LSTM, Autoencoders, Convolutional Autoencoders etc., have shown positive results in such imbalanced data. However, the major challenge that algorithms face when applied to multivariate time series is that the anomaly can arise from a small subset of the feature set. To boost the performance of these base models, we propose a feature-bagging technique that considers only a subset of features at a time, and we further apply a transformation that is based on nested rotation computed from Principal Component Analysis (PCA) to improve the effectiveness and generalization of the approach. To further enhance the prediction performance, we propose an ensemble technique that combines multiple base models toward the final decision. In addition, a semi-supervised approach using a Logistic Regressor to combine the base models' outputs is proposed. The proposed methodology is applied to the Skoltech Anomaly Benchmark (SKAB) dataset, which contains time series data related to the flow of water in a closed circuit, and the experimental results show that the proposed ensemble technique outperforms the basic algorithms. More specifically, the performance improvement in terms of anomaly detection accuracy reaches 2% for the unsupervised and at least 10% for the semi-supervised models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.