Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Pre-training Data Matters in Unsupervised Domain Adaptation (2308.03097v2)

Published 6 Aug 2023 in cs.CV

Abstract: In deep learning, initializing models with pre-trained weights has become the de facto practice for various downstream tasks. Many unsupervised domain adaptation (UDA) methods typically adopt a backbone pre-trained on ImageNet, and focus on reducing the source-target domain discrepancy. However, the impact of pre-training on adaptation received little attention. In this study, we delve into UDA from the novel perspective of pre-training. We first demonstrate the impact of pre-training by analyzing the dynamic distribution discrepancies between pre-training data domain and the source/ target domain during adaptation. Then, we reveal that the target error also stems from the pre-training in the following two factors: 1) empirically, target error arises from the gradually degenerative pre-trained knowledge during adaptation; 2) theoretically, the error bound depends on difference between the gradient of loss function, \ie, on the target domain and pre-training data domain. To address these two issues, we redefine UDA as a three-domain problem, \ie, source domain, target domain, and pre-training data domain; then we propose a novel framework, named TriDA. We maintain the pre-trained knowledge and improve the error bound by incorporating pre-training data into adaptation for both vanilla UDA and source-free UDA scenarios. For efficiency, we introduce a selection strategy for pre-training data, and offer a solution with synthesized images when pre-training data is unavailable during adaptation. Notably, TriDA is effective even with a small amount of pre-training or synthesized images, and seamlessly complements the two scenario UDA methods, demonstrating state-of-the-art performance across multiple benchmarks. We hope our work provides new insights for better understanding and application of domain adaptation.

Summary

We haven't generated a summary for this paper yet.