Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot Fine-grained Action Recognition (2308.03063v1)

Published 6 Aug 2023 in cs.CV and cs.MM

Abstract: Due to the scarcity of manually annotated data required for fine-grained video understanding, few-shot fine-grained (FS-FG) action recognition has gained significant attention, with the aim of classifying novel fine-grained action categories with only a few labeled instances. Despite the progress made in FS coarse-grained action recognition, current approaches encounter two challenges when dealing with the fine-grained action categories: the inability to capture subtle action details and the insufficiency of learning from limited data that exhibit high intra-class variance and inter-class similarity. To address these limitations, we propose M$3$Net, a matching-based framework for FS-FG action recognition, which incorporates \textit{multi-view encoding}, \textit{multi-view matching}, and \textit{multi-view fusion} to facilitate embedding encoding, similarity matching, and decision making across multiple viewpoints. \textit{Multi-view encoding} captures rich contextual details from the intra-frame, intra-video, and intra-episode perspectives, generating customized higher-order embeddings for fine-grained data. \textit{Multi-view matching} integrates various matching functions enabling flexible relation modeling within limited samples to handle multi-scale spatio-temporal variations by leveraging the instance-specific, category-specific, and task-specific perspectives. \textit{Multi-view fusion} consists of matching-predictions fusion and matching-losses fusion over the above views, where the former promotes mutual complementarity and the latter enhances embedding generalizability by employing multi-task collaborative learning. Explainable visualizations and experimental results on three challenging benchmarks demonstrate the superiority of M$3$Net in capturing fine-grained action details and achieving state-of-the-art performance for FS-FG action recognition.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.