Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semi-supervised Learning for Segmentation of Bleeding Regions in Video Capsule Endoscopy (2308.02869v1)

Published 5 Aug 2023 in cs.CV and cs.AI

Abstract: In the realm of modern diagnostic technology, video capsule endoscopy (VCE) is a standout for its high efficacy and non-invasive nature in diagnosing various gastrointestinal (GI) conditions, including obscure bleeding. Importantly, for the successful diagnosis and treatment of these conditions, accurate recognition of bleeding regions in VCE images is crucial. While deep learning-based methods have emerged as powerful tools for the automated analysis of VCE images, they often demand large training datasets with comprehensive annotations. Acquiring these labeled datasets tends to be time-consuming, costly, and requires significant domain expertise. To mitigate this issue, we have embraced a semi-supervised learning (SSL) approach for the bleeding regions segmentation within VCE. By adopting the `Mean Teacher' method, we construct a student U-Net equipped with an scSE attention block, alongside a teacher model of the same architecture. These models' parameters are alternately updated throughout the training process. We use the Kvasir-Capsule dataset for our experiments, which encompasses various GI bleeding conditions. Notably, we develop the segmentation annotations for this dataset ourselves. The findings from our experiments endorse the efficacy of the SSL-based segmentation strategy, demonstrating its capacity to reduce reliance on large volumes of annotations for model training, without compromising on the accuracy of identification.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.