Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Learning for Segmentation of Bleeding Regions in Video Capsule Endoscopy (2308.02869v1)

Published 5 Aug 2023 in cs.CV and cs.AI

Abstract: In the realm of modern diagnostic technology, video capsule endoscopy (VCE) is a standout for its high efficacy and non-invasive nature in diagnosing various gastrointestinal (GI) conditions, including obscure bleeding. Importantly, for the successful diagnosis and treatment of these conditions, accurate recognition of bleeding regions in VCE images is crucial. While deep learning-based methods have emerged as powerful tools for the automated analysis of VCE images, they often demand large training datasets with comprehensive annotations. Acquiring these labeled datasets tends to be time-consuming, costly, and requires significant domain expertise. To mitigate this issue, we have embraced a semi-supervised learning (SSL) approach for the bleeding regions segmentation within VCE. By adopting the `Mean Teacher' method, we construct a student U-Net equipped with an scSE attention block, alongside a teacher model of the same architecture. These models' parameters are alternately updated throughout the training process. We use the Kvasir-Capsule dataset for our experiments, which encompasses various GI bleeding conditions. Notably, we develop the segmentation annotations for this dataset ourselves. The findings from our experiments endorse the efficacy of the SSL-based segmentation strategy, demonstrating its capacity to reduce reliance on large volumes of annotations for model training, without compromising on the accuracy of identification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.