Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks (2308.02836v1)

Published 5 Aug 2023 in cs.LG, cs.NE, and stat.ML

Abstract: We investigate to what extent it is possible to solve linear inverse problems with $ReLu$ networks. Due to the scaling invariance arising from the linearity, an optimal reconstruction function $f$ for such a problem is positive homogeneous, i.e., satisfies $f(\lambda x) = \lambda f(x)$ for all non-negative $\lambda$. In a $ReLu$ network, this condition translates to considering networks without bias terms. We first consider recovery of sparse vectors from few linear measurements. We prove that $ReLu$- networks with only one hidden layer cannot even recover $1$-sparse vectors, not even approximately, and regardless of the width of the network. However, with two hidden layers, approximate recovery with arbitrary precision and arbitrary sparsity level $s$ is possible in a stable way. We then extend our results to a wider class of recovery problems including low-rank matrix recovery and phase retrieval. Furthermore, we also consider the approximation of general positive homogeneous functions with neural networks. Extending previous work, we establish new results explaining under which conditions such functions can be approximated with neural networks. Our results also shed some light on the seeming contradiction between previous works showing that neural networks for inverse problems typically have very large Lipschitz constants, but still perform very well also for adversarial noise. Namely, the error bounds in our expressivity results include a combination of a small constant term and a term that is linear in the noise level, indicating that robustness issues may occur only for very small noise levels.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.