Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploring Part-Informed Visual-Language Learning for Person Re-Identification (2308.02738v2)

Published 4 Aug 2023 in cs.CV

Abstract: Recently, visual-language learning (VLL) has shown great potential in enhancing visual-based person re-identification (ReID). Existing VLL-based ReID methods typically focus on image-text feature alignment at the whole-body level, while neglecting supervision on fine-grained part features, thus lacking constraints for local feature semantic consistency. To this end, we propose Part-Informed Visual-language Learning ($\pi$-VL) to enhance fine-grained visual features with part-informed language supervisions for ReID tasks. Specifically, $\pi$-VL introduces a human parsing-guided prompt tuning strategy and a hierarchical visual-language alignment paradigm to ensure within-part feature semantic consistency. The former combines both identity labels and human parsing maps to constitute pixel-level text prompts, and the latter fuses multi-scale visual features with a light-weight auxiliary head to perform fine-grained image-text alignment. As a plug-and-play and inference-free solution, our $\pi$-VL achieves performance comparable to or better than state-of-the-art methods on four commonly used ReID benchmarks. Notably, it reports 91.0% Rank-1 and 76.9% mAP on the challenging MSMT17 database, without bells and whistles.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.