Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring the Effect of Sparse Recovery on the Quality of Image Superresolution (2308.02714v1)

Published 4 Aug 2023 in cs.CV, cs.LG, and eess.IV

Abstract: Dictionary learning can be used for image superresolution by learning a pair of coupled dictionaries of image patches from high-resolution and low-resolution image pairs such that the corresponding pairs share the same sparse vector when represented by the coupled dictionaries. These dictionaries then can be used to to reconstruct the corresponding high-resolution patches from low-resolution input images based on sparse recovery. The idea is to recover the shared sparse vector using the low-resolution dictionary and then multiply it by the high-resolution dictionary to recover the corresponding high-resolution image patch. In this work, we study the effect of the sparse recovery algorithm that we use on the quality of the reconstructed images. We offer empirical experiments to search for the best sparse recovery algorithm that can be used for this purpose.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.