Coordinate-adaptive integration of PDEs on tensor manifolds (2308.02659v1)
Abstract: We introduce a new tensor integration method for time-dependent PDEs that controls the tensor rank of the PDE solution via time-dependent diffeomorphic coordinate transformations. Such coordinate transformations are generated by minimizing the normal component of the PDE operator relative to the tensor manifold that approximates the PDE solution via a convex functional. The proposed method significantly improves upon and may be used in conjunction with the coordinate-adaptive algorithm we recently proposed in JCP (2023) Vol. 491, 112378, which is based on non-convex relaxations of the rank minimization problem and Riemannian optimization. Numerical applications demonstrating the effectiveness of the proposed coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.