Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linearly Implicit Global Energy Preserving Reduced-order Models for Cubic Hamiltonian Systems (2308.02625v1)

Published 4 Aug 2023 in math.NA and cs.NA

Abstract: This work discusses the model reduction problem for large-scale multi-symplectic PDEs with cubic invariants. For this, we present a linearly implicit global energy-preserving method to construct reduced-order models. This allows to construct reduced-order models in the form of Hamiltonian systems suitable for long-time integration. Furthermore, We prove that the constructed reduced-order models preserve global energy, and the spatially discrete equations also preserve the spatially-discrete local energy conversation law. We illustrate the efficiency of the proposed method using three numerical examples, namely a linear wave equation, the Korteweg-de Vries equation, and the Camassa-Holm equation, and present a comparison with the classical POD-Galerkin method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.