Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unravelling Responsibility for AI (2308.02608v3)

Published 4 Aug 2023 in cs.AI, cs.CY, and cs.RO

Abstract: It is widely acknowledged that we need to establish where responsibility lies for the outputs and impacts of AI-enabled systems. This is important to achieve justice and compensation for victims of AI harms, and to inform policy and engineering practice. But without a clear, thorough understanding of what `responsibility' means, deliberations about where responsibility lies will be, at best, unfocused and incomplete and, at worst, misguided. Furthermore, AI-enabled systems exist within a wider ecosystem of actors, decisions, and governance structures, giving rise to complex networks of responsibility relations. To address these issues, this paper presents a conceptual framework of responsibility, accompanied with a graphical notation and general methodology, for visualising these responsibility networks and for tracing different responsibility attributions for AI. Taking the three-part formulation 'Actor A is responsible for Occurrence O,' the framework unravels the concept of responsibility to clarify that there are different possibilities of who is responsible for AI, senses in which they are responsible, and aspects of events they are responsible for. The notation allows these permutations to be represented graphically. The methodology enables users to apply the framework to specific scenarios. The aim is to offer a foundation to support stakeholders from diverse disciplinary backgrounds to discuss and address complex responsibility questions in hypothesised and real-world cases involving AI. The work is illustrated by application to a fictitious scenario of a fatal collision between a crewless, AI-enabled maritime vessel in autonomous mode and a traditional, crewed vessel at sea.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: