Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving Probabilistic Bisimulation for MDPs Using Machine Learning (2308.02519v1)

Published 30 Jul 2023 in cs.LO, cs.LG, cs.PF, and cs.PL

Abstract: The utilization of model checking has been suggested as a formal verification technique for analyzing critical systems. However, the primary challenge in applying to complex systems is state space explosion problem. To address this issue, bisimulation minimization has emerged as a prominent method for reducing the number of states in a labeled transition system, aiming to overcome the difficulties associated with the state space explosion problem. In the case of systems exhibiting stochastic behaviors, probabilistic bisimulation is employed to minimize a given model, obtaining its equivalent form with fewer states. Recently, various techniques have been introduced to decrease the time complexity of the iterative methods used to compute probabilistic bisimulation for stochastic systems that display nondeterministic behaviors. In this paper, we propose a new technique to partition the state space of a given probabilistic model to its bisimulation classes. This technique uses the PRISM program of a given model and constructs some small versions of the model to train a classifier. It then applies machine learning classification techniques to approximate the related partition. The resulting partition is used as an initial one for the standard bisimulation technique in order to reduce the running time of the method. The experimental results show that the approach can decrease significantly the running time compared to state-of-the-art tools.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.