Papers
Topics
Authors
Recent
2000 character limit reached

Assessing Intra-class Diversity and Quality of Synthetically Generated Images in a Biomedical and Non-biomedical Setting (2308.02505v1)

Published 23 Jul 2023 in eess.IV, cs.CV, and cs.LG

Abstract: In biomedical image analysis, data imbalance is common across several imaging modalities. Data augmentation is one of the key solutions in addressing this limitation. Generative Adversarial Networks (GANs) are increasingly being relied upon for data augmentation tasks. Biomedical image features are sensitive to evaluating the efficacy of synthetic images. These features can have a significant impact on metric scores when evaluating synthetic images across different biomedical imaging modalities. Synthetically generated images can be evaluated by comparing the diversity and quality of real images. Multi-scale Structural Similarity Index Measure and Cosine Distance are used to evaluate intra-class diversity, while Frechet Inception Distance is used to evaluate the quality of synthetic images. Assessing these metrics for biomedical and non-biomedical imaging is important to investigate an informed strategy in evaluating the diversity and quality of synthetic images. In this work, an empirical assessment of these metrics is conducted for the Deep Convolutional GAN in a biomedical and non-biomedical setting. The diversity and quality of synthetic images are evaluated using different sample sizes. This research intends to investigate the variance in diversity and quality across biomedical and non-biomedical imaging modalities. Results demonstrate that the metrics scores for diversity and quality vary significantly across biomedical-to-biomedical and biomedical-to-non-biomedical imaging modalities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.