Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer (2308.02467v2)

Published 4 Aug 2023 in math.NA and cs.NA

Abstract: In this paper, we propose a systematic approach for accelerating finite element-type methods by machine learning for the numerical solution of partial differential equations (PDEs). The main idea is to use a neural network to learn the solution map of the PDEs and to do so in an element-wise fashion. This map takes input of the element geometry and the PDEs' parameters on that element, and gives output of two operators -- (1) the in2out operator for inter-element communication, and (2) the in2sol operator (Green's function) for element-wise solution recovery. A significant advantage of this approach is that, once trained, this network can be used for the numerical solution of the PDE for any domain geometry and any parameter distribution without retraining. Also, the training is significantly simpler since it is done on the element level instead on the entire domain. We call this approach element learning. This method is closely related to hybridizbale discontinuous Galerkin (HDG) methods in the sense that the local solvers of HDG are replaced by machine learning approaches. Numerical tests are presented for an example PDE, the radiative transfer equation, in a variety of scenarios with idealized or realistic cloud fields, with smooth or sharp gradient in the cloud boundary transition. Under a fixed accuracy level of $10{-3}$ in the relative $L2$ error, and polynomial degree $p=6$ in each element, we observe an approximately 5 to 10 times speed-up by element learning compared to a classical finite element-type method.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.