Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Communication-Efficient Decentralized Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control (2308.02345v5)

Published 4 Aug 2023 in eess.SY and cs.SY

Abstract: Connected and autonomous vehicles (CAVs) promise next-gen transportation systems with enhanced safety, energy efficiency, and sustainability. One typical control strategy for CAVs is the so-called cooperative adaptive cruise control (CACC) where vehicles drive in platoons and cooperate to achieve safe and efficient transportation. In this study, we formulate CACC as a multi-agent reinforcement learning (MARL) problem. Diverging from existing MARL methods that use centralized training and decentralized execution which require not only a centralized communication mechanism but also dense inter-agent communication during training and online adaptation, we propose a fully decentralized MARL framework for enhanced efficiency and scalability. In addition, a quantization-based communication scheme is proposed to reduce the communication overhead without significantly degrading the control performance. This is achieved by employing randomized rounding numbers to quantize each piece of communicated information and only communicating non-zero components after quantization. Extensive experimentation in two distinct CACC settings reveals that the proposed MARL framework consistently achieves superior performance over several contemporary benchmarks in terms of both communication efficiency and control efficacy. In the appendix, we show that our proposed framework's applicability extends beyond CACC, showing promise for broader intelligent transportation systems with intricate action and state spaces.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.