Papers
Topics
Authors
Recent
2000 character limit reached

Learning Referring Video Object Segmentation from Weak Annotation (2308.02162v2)

Published 4 Aug 2023 in cs.CV

Abstract: Referring video object segmentation (RVOS) is a task that aims to segment the target object in all video frames based on a sentence describing the object. Although existing RVOS methods have achieved significant performance, they depend on densely-annotated datasets, which are expensive and time-consuming to obtain. In this paper, we propose a new annotation scheme that reduces the annotation effort by 8 times, while providing sufficient supervision for RVOS. Our scheme only requires a mask for the frame where the object first appears and bounding boxes for the rest of the frames. Based on this scheme, we develop a novel RVOS method that exploits weak annotations effectively. Specifically, we build a simple but effective baseline model, SimRVOS, for RVOS with weak annotation. Then, we design a cross frame segmentation module, which uses the language-guided dynamic filters from one frame to segment the target object in other frames to thoroughly leverage the valuable mask annotation and bounding boxes. Finally, we develop a bi-level contrastive learning method to enhance the pixel-level discriminative representation of the model with weak annotation. We conduct extensive experiments to show that our method achieves comparable or even superior performance to fully-supervised methods, without requiring dense mask annotations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.