Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Referring Video Object Segmentation from Weak Annotation (2308.02162v2)

Published 4 Aug 2023 in cs.CV

Abstract: Referring video object segmentation (RVOS) is a task that aims to segment the target object in all video frames based on a sentence describing the object. Although existing RVOS methods have achieved significant performance, they depend on densely-annotated datasets, which are expensive and time-consuming to obtain. In this paper, we propose a new annotation scheme that reduces the annotation effort by 8 times, while providing sufficient supervision for RVOS. Our scheme only requires a mask for the frame where the object first appears and bounding boxes for the rest of the frames. Based on this scheme, we develop a novel RVOS method that exploits weak annotations effectively. Specifically, we build a simple but effective baseline model, SimRVOS, for RVOS with weak annotation. Then, we design a cross frame segmentation module, which uses the language-guided dynamic filters from one frame to segment the target object in other frames to thoroughly leverage the valuable mask annotation and bounding boxes. Finally, we develop a bi-level contrastive learning method to enhance the pixel-level discriminative representation of the model with weak annotation. We conduct extensive experiments to show that our method achieves comparable or even superior performance to fully-supervised methods, without requiring dense mask annotations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Wangbo Zhao (25 papers)
  2. Kepan Nan (5 papers)
  3. Songyang Zhang (116 papers)
  4. Kai Chen (512 papers)
  5. Dahua Lin (336 papers)
  6. Yang You (173 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.