Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using POMDP-based Approach to Address Uncertainty-Aware Adaptation for Self-Protecting Software (2308.02134v2)

Published 4 Aug 2023 in cs.SE, cs.SY, and eess.SY

Abstract: The threats posed by evolving cyberattacks have led to increased research related to software systems that can self-protect. One topic in this domain is Moving Target Defense (MTD), which changes software characteristics in the protected system to make it harder for attackers to exploit vulnerabilities. However, MTD implementation and deployment are often impacted by run-time uncertainties, and existing MTD decision-making solutions have neglected uncertainty in model parameters and lack self-adaptation. This paper aims to address this gap by proposing an approach for an uncertainty-aware and self-adaptive MTD decision engine based on Partially Observable Markov Decision Process and Bayesian Learning techniques. The proposed approach considers uncertainty in both state and model parameters; thus, it has the potential to better capture environmental variability and improve defense strategies. A preliminary study is presented to highlight the potential effectiveness and challenges of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.