Papers
Topics
Authors
Recent
2000 character limit reached

Are Easy Data Easy (for K-Means) (2308.01926v1)

Published 2 Aug 2023 in cs.LG

Abstract: This paper investigates the capability of correctly recovering well-separated clusters by various brands of the $k$-means algorithm. The concept of well-separatedness used here is derived directly from the common definition of clusters, which imposes an interplay between the requirements of within-cluster-homogenicity and between-clusters-diversity. Conditions are derived for a special case of well-separated clusters such that the global minimum of $k$-means cost function coincides with the well-separatedness. An experimental investigation is performed to find out whether or no various brands of $k$-means are actually capable of discovering well separated clusters. It turns out that they are not. A new algorithm is proposed that is a variation of $k$-means++ via repeated {sub}sampling when choosing a seed. The new algorithm outperforms four other algorithms from $k$-means family on the task.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.