Are Easy Data Easy (for K-Means) (2308.01926v1)
Abstract: This paper investigates the capability of correctly recovering well-separated clusters by various brands of the $k$-means algorithm. The concept of well-separatedness used here is derived directly from the common definition of clusters, which imposes an interplay between the requirements of within-cluster-homogenicity and between-clusters-diversity. Conditions are derived for a special case of well-separated clusters such that the global minimum of $k$-means cost function coincides with the well-separatedness. An experimental investigation is performed to find out whether or no various brands of $k$-means are actually capable of discovering well separated clusters. It turns out that they are not. A new algorithm is proposed that is a variation of $k$-means++ via repeated {sub}sampling when choosing a seed. The new algorithm outperforms four other algorithms from $k$-means family on the task.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.