Semi Supervised Meta Learning for Spatiotemporal Learning (2308.01916v1)
Abstract: We approached the goal of applying meta-learning to self-supervised masked autoencoders for spatiotemporal learning in three steps. Broadly, we seek to understand the impact of applying meta-learning to existing state-of-the-art representation learning architectures. Thus, we test spatiotemporal learning through: a meta-learning architecture only, a representation learning architecture only, and an architecture applying representation learning alongside a meta learning architecture. We utilize the Memory Augmented Neural Network (MANN) architecture to apply meta-learning to our framework. Specifically, we first experiment with applying a pre-trained MAE and fine-tuning on our small-scale spatiotemporal dataset for video reconstruction tasks. Next, we experiment with training an MAE encoder and applying a classification head for action classification tasks. Finally, we experiment with applying a pre-trained MAE and fine-tune with MANN backbone for action classification tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.