Papers
Topics
Authors
Recent
2000 character limit reached

Deep Neural Networks Fused with Textures for Image Classification

Published 3 Aug 2023 in cs.CV and cs.AI | (2308.01813v2)

Abstract: Fine-grained image classification (FGIC) is a challenging task in computer vision for due to small visual differences among inter-subcategories, but, large intra-class variations. Deep learning methods have achieved remarkable success in solving FGIC. In this paper, we propose a fusion approach to address FGIC by combining global texture with local patch-based information. The first pipeline extracts deep features from various fixed-size non-overlapping patches and encodes features by sequential modelling using the long short-term memory (LSTM). Another path computes image-level textures at multiple scales using the local binary patterns (LBP). The advantages of both streams are integrated to represent an efficient feature vector for image classification. The method is tested on eight datasets representing the human faces, skin lesions, food dishes, marine lives, etc. using four standard backbone CNNs. Our method has attained better classification accuracy over existing methods with notable margins.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.