Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Disentangling Multi-view Representations Beyond Inductive Bias (2308.01634v2)

Published 3 Aug 2023 in cs.CV and cs.MM

Abstract: Multi-view (or -modality) representation learning aims to understand the relationships between different view representations. Existing methods disentangle multi-view representations into consistent and view-specific representations by introducing strong inductive biases, which can limit their generalization ability. In this paper, we propose a novel multi-view representation disentangling method that aims to go beyond inductive biases, ensuring both interpretability and generalizability of the resulting representations. Our method is based on the observation that discovering multi-view consistency in advance can determine the disentangling information boundary, leading to a decoupled learning objective. We also found that the consistency can be easily extracted by maximizing the transformation invariance and clustering consistency between views. These observations drive us to propose a two-stage framework. In the first stage, we obtain multi-view consistency by training a consistent encoder to produce semantically-consistent representations across views as well as their corresponding pseudo-labels. In the second stage, we disentangle specificity from comprehensive representations by minimizing the upper bound of mutual information between consistent and comprehensive representations. Finally, we reconstruct the original data by concatenating pseudo-labels and view-specific representations. Our experiments on four multi-view datasets demonstrate that our proposed method outperforms 12 comparison methods in terms of clustering and classification performance. The visualization results also show that the extracted consistency and specificity are compact and interpretable. Our code can be found at \url{https://github.com/Guanzhou-Ke/DMRIB}.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.