Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Achieving state-of-the-art performance in the Medical Out-of-Distribution (MOOD) challenge using plausible synthetic anomalies (2308.01412v2)

Published 2 Aug 2023 in cs.CV

Abstract: The detection and localization of anomalies is one important medical image analysis task. Most commonly, Computer Vision anomaly detection approaches rely on manual annotations that are both time consuming and expensive to obtain. Unsupervised anomaly detection, or Out-of-Distribution detection, aims at identifying anomalous samples relying only on unannotated samples considered normal. In this study we present a new unsupervised anomaly detection method. Our method builds upon the self-supervised strategy consisting on training a segmentation network to identify local synthetic anomalies. Our contributions improve the synthetic anomaly generation process, making synthetic anomalies more heterogeneous and challenging by 1) using complex random shapes and 2) smoothing the edges of synthetic anomalies so networks cannot rely on the high gradient between image and synthetic anomalies. In our implementation we adopted standard practices in 3D medical image segmentation, including 3D U-Net architecture, patch-wise training and model ensembling. Our method was evaluated using a validation set with different types of synthetic anomalies. Our experiments show that our method improved substantially the baseline method performance. Additionally, we evaluated our method by participating in the Medical Out-of-Distribution (MOOD) Challenge held at MICCAI in 2022 and achieved first position in both sample-wise and pixel-wise tasks. Our experiments and results in the latest MOOD challenge show that our simple yet effective approach can substantially improve the performance of Out-of-Distribution detection techniques which rely on synthetic anomalies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.