Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 72 tok/s
Gemini 3.0 Pro 51 tok/s Pro
Gemini 2.5 Flash 147 tok/s Pro
Kimi K2 185 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Revisiting DETR Pre-training for Object Detection (2308.01300v2)

Published 2 Aug 2023 in cs.CV

Abstract: Motivated by the remarkable achievements of DETR-based approaches on COCO object detection and segmentation benchmarks, recent endeavors have been directed towards elevating their performance through self-supervised pre-training of Transformers while preserving a frozen backbone. Noteworthy advancements in accuracy have been documented in certain studies. Our investigation delved deeply into a representative approach, DETReg, and its performance assessment in the context of emerging models like $\mathcal{H}$-Deformable-DETR. Regrettably, DETReg proves inadequate in enhancing the performance of robust DETR-based models under full data conditions. To dissect the underlying causes, we conduct extensive experiments on COCO and PASCAL VOC probing elements such as the selection of pre-training datasets and strategies for pre-training target generation. By contrast, we employ an optimized approach named Simple Self-training which leads to marked enhancements through the combination of an improved box predictor and the Objects$365$ benchmark. The culmination of these endeavors results in a remarkable AP score of $59.3\%$ on the COCO val set, outperforming $\mathcal{H}$-Deformable-DETR + Swin-L without pre-training by $1.4\%$. Moreover, a series of synthetic pre-training datasets, generated by merging contemporary image-to-text(LLaVA) and text-to-image (SDXL) models, significantly amplifies object detection capabilities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com