Papers
Topics
Authors
Recent
2000 character limit reached

Global Hierarchical Neural Networks using Hierarchical Softmax (2308.01210v1)

Published 2 Aug 2023 in stat.ML, cs.CL, and cs.LG

Abstract: This paper presents a framework in which hierarchical softmax is used to create a global hierarchical classifier. The approach is applicable for any classification task where there is a natural hierarchy among classes. We show empirical results on four text classification datasets. In all datasets the hierarchical softmax improved on the regular softmax used in a flat classifier in terms of macro-F1 and macro-recall. In three out of four datasets hierarchical softmax achieved a higher micro-accuracy and macro-precision.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.