Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Analysing the Resourcefulness of the Paragraph for Precedence Retrieval (2308.01203v1)

Published 29 Jul 2023 in cs.IR and cs.CL

Abstract: Developing methods for extracting relevant legal information to aid legal practitioners is an active research area. In this regard, research efforts are being made by leveraging different kinds of information, such as meta-data, citations, keywords, sentences, paragraphs, etc. Similar to any text document, legal documents are composed of paragraphs. In this paper, we have analyzed the resourcefulness of paragraph-level information in capturing similarity among judgments for improving the performance of precedence retrieval. We found that the paragraph-level methods could capture the similarity among the judgments with only a few paragraph interactions and exhibit more discriminating power over the baseline document-level method. Moreover, the comparison results on two benchmark datasets for the precedence retrieval on the Indian supreme court judgments task show that the paragraph-level methods exhibit comparable performance with the state-of-the-art methods

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.